180 research outputs found

    Longer Fasting After Rybelsus Administration Contributes Higher Efficacy

    Get PDF
    Recent pharmacological topic for diabetes includes clinical application of Glucagon-like peptide 1 receptor agonists (GLP-1 RAs). Among them, oral semaglutide (Rybelsus) has been developed as the first oral form of GLP-1RA by useful application of sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC). Semaglutide concentration in the blood was compared when fasting time period after Rybelsus administration would be 15, 30, 60 and 120 minutes. As a result, the concentration ratio after 4 hours was 1.00, 1.67, 2.60 and 3.06, respectively. Authors have experienced a diabetic case of remarkable efficacy as HbA1c -1.4% and weight -5kg, who kept 3-4 hours fasting after Rybelsus intake

    肺癌におけるREG Iα遺伝子の発現は、腺癌、肩平上皮癌で異なったメカニズムにより、予後不良を示唆する。

    Get PDF
    The aim of the present study was to evaluate the effects of the REG Iα and REG Iβ genes on lung cancer cell lines, and thereafter, the expression of REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP and REG IV) in lung cancer in relation to patient prognosis was evaluated. Lung adenocarcinoma (AD) and squamous cell carcinoma (SCC) cell lines expressing REG Iα or REG Iβ (HLC-1 REG Iα/Iβ and EBC-1 REG Iα/Iβ) were established, and cell number, cell invasive activity, and anchorage-independent cell growth were compared with these variables in the control cells. The expression levels of REG family genes were evaluated by real-time RT-PCR in surgically resected lung cancers, and disease-specific survival (DSS) curves were generated. The HLC-1 REG Iα/Iβ cell line showed significant increases in cell number and anchorage-independent cell growth compared with the control cells. EBC-1 REG Iα/Iβ cells showed significant increases in cell invasive activity and anchorage-independent cell growth as compared with the control cells. Except for the REG Iβ gene, expression of other REG family genes was observed in the surgically resected samples; however, DSS was significantly worse only in stage I patients who were positive for REG Iα expression than in patients who were negative for REG Iα expression. The effects of REG Iα on AD and SCC cells were different in the in vitro study, and a correlation between REG Iα expression and patient prognosis was noted in the in vivo study. Therefore, overexpression of REG Iα is a risk factor for poor prognosis caused by discrete mechanisms in AD and SCC patients.博士(医学)・乙第1339号・平成26年5月28日本文のリンク:http://dx.doi.org/10.3892/or.2013.2739Copyright © Spandidos Publications 201

    Destruxin E Decreases Beta-Amyloid Generation by Reducing Colocalization of Beta-Amyloid-Cleaving Enzyme 1 and Beta-Amyloid Protein Precursor

    Get PDF
    Alzheimer-disease-associated beta-amyloid (A beta) is produced by sequential endoproteolysis of beta-amyloid protein precursor (beta APP): the extracellular portion is shed by cleavage in the juxtamembrane region by beta-amyloid-cleaving enzyme (BACE)/beta-secretase, after which it is cleaved by presenilin (PS)/gamma-secretase near the middle of the transmembrane domain. Thus, inhibition of either of the secretases reduces A beta generation and is a fundamental strategy for the development of drugs to prevent Alzheimer disease. However, it is not clear how small compounds reduce A beta production without inhibition of the secretases. Such compounds are expected to avoid some of the side effects of secretase inhibitors. Here, we report that destruxin E (Dx-E), a natural cyclic hexadepsipeptide, reduces A beta generation without affecting BACE or PS/gamma-secretase activity. In agreement with this, Dx-E did not inhibit Notch signaling. We found that Dx-E decreases colocalization of BACE1 and beta APP, which reduces beta-cleavage of beta APP. Therefore, the data demonstrate that Dx-E represents a novel A beta-reducing process which could have fewer side effects than secretase inhibitors. Copyright (C) 2009 S. Karger AG, Base

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
    corecore